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Abstract

Evolutionary methods are successfully used to solve static optimization

problems, where the aim of the method is to find the global best solution. In

the case of optimization problems in dynamic and uncertain environments

the aim of the method is to follow the changes in the environment or to find

solutions with a robust behavior. In this case some problems can appear

because of the premature convergence of the evolutionary methods. Differ-

ent mechanisms are proposed in order to solve the problems in uncertain

and dynamic environments, methods that allow to maintain the population

diversity during the run, memory archive usage and multi-populations.

Since many optimization problems in real world are dynamic, their prop-

erties vary/change over time. This thesis is focused on three real world

problems: grid scheduling, data clustering and medical rules mining by ana-

lyzing their behavior in uncertain and dynamic environments. Uncertainty

in optimization problem can arise from several sources: the evaluation of

the fitness function may be subject to noise, the design variables may be

subject to perturbations, the fitness function may be approximated or may

change over time.

In this thesis we proposed and analyzed some algorithms’ behavior in

uncertain and dynamic environments. We proposed a simple perturbation

of particles position in the case of a particle swarm optimization heuristic

and the introduction of random elements in the case of a differential evo-

lution heuristic and we analyzed the behavior of the two mechanisms on

two dynamic optimization problems benchmarks. For the grid scheduling

problem we proposed and studied the behavior of an evolutionary scheduler

in the case of online scheduling. For the evolutionary scheduler and an ant

scheduler, the robustness and the behavior in a dynamic environment are

analyzed. In the case of clustering problem we studied the influence of noise

and missing values for AntClust heuristic and proposed a density property
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in order to improve the noisy data clustering. For rule mining problem we

proposed a multi-objective evolutionary algorithm that incorporates human

experts evaluation for medical data and we analyzed the influence of missing

values in data and human interaction in the search process. Also a hybrid

classifier based on non-nested generalized exemplars and an evolutionary

selection of attributes and exemplars is proposed in order to offer an alter-

native to exhaustive search and to a switch strategy used for selection of a

task scheduling algorithm for a grid scheduler.
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Chapter 1

Introduction

1.1 Key Words

Evolutionary Algorithms, Particle Swarm Optimization, Ant Colony Optimization, Grid

Scheduling, Medical Data Rule Mining, Clustering, AntClust, Scheduling Data Rule Mining

1.2 Motivation

Many optimization problems found in real world are subject to change. These changes

could be the result of simulation, measurement or approximation errors, that implies noise

or uncertainty in objective evaluation. In addition, the design variables or environmental

conditions may also be perturbed or change over time. For example, in a task scheduling

problem new tasks can appear or disappear from schedulers, machines can function slower

or material quality change, traffic jams can appear in a routing problems, etc. So, we can

say that these optimization problems should be solved tacking into account the fact that

they correspond to uncertain and dynamic environments. In this cases, problem objective is

not to find the global optima, but to follow the changes in dynamic environment or to find

solution with robust behavior when the environment is uncertain.

Evolutionary methods have been used so far with success to solve optimization problem.

They are an alternative to deterministic algorithms that find suboptimal solutions of the

problem. Among their advantages we can count the robustness regarding problem size (a

good alternative in the case of large problems), problem instance and random variables. The

quality of evolutionary methods depends on the balance between search space exploitation

3



4 Introduction

and exploration; the exploitation allows the improvement of the solution while exploration

encourage the coverage of new region of the search space. Various search techniques belong

to evolutionary methods: genetic algorithms, evolutionary strategies, genetic algorithms,

particle swarm optimization, ant colony optimization, artificial immune systems, etc. Evo-

lutionary methods proved to be suited for solving optimization problems in uncertain and

dynamic environments, because there are different mechanisms that can be added in order

to obtain good results, without having to restart the heuristic.

This thesis is focused on analyzing the ability of some evolutionary methods to solve

different optimization problems in uncertain and dynamic environments. This is a challeng-

ing problem because many problems that can be found in practice are dynamic and various

factors can influence the solution quality and the solution feasibility can depend of multiple

criteria.

1.3 Thesis Structure

The thesis is structured as follows.

Chapter 2 makes a general presentation of the concepts that are discussed in this thesis:

optimization problems, uncertain and dynamic environments. This chapter also contains

a motivation of the fact that clustering and rule mining problems can be formulated as

optimization problems.

Chapter 3 contains a general presentation of the heuristics used in this thesis: evolutionary

algorithms, ant colony optimization and particle swarm optimization. Some mechanisms

needed to adapt the nature inspired heuristics enumerated earlier into dynamic environments

are presented. This chapter also contains an example of two nature inspired metaheuristics:

differential evolution and particle swarm optimization applied into a dynamic environment

for two optimization problems benchmarks.

Chapter 4 addresses the problem of grid scheduling into a static and dynamic environ-

ments. The chapter contains a review of evolutionary techniques applied to grid scheduling

problem, the formalization of grid scheduling problem and describes the particularities of the

two nature inspired heuristics: evolutionary algorithm and ant colony optimization needed in

order to map the heuristics to the grid scheduling problem. The numerical results discussed

in this chapter are regarding the robustness and behavior of the two heuristics in a static

and dynamic environment. Various types of scheduling (batch, pseudo-batch and online) are
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analyzed. Results of a comparative analysis between the evolutionary scheduler and other

heuristics for online scheduling are proposed.

Chapter 5 contains an application of an ant clustering algorithm, AntClust, in the case

of noisy and medical datasets. A review of ant clustering approaches can be found in Section

5.1. The presentation of AntClust algorithm (which is inspired by the chemical recognition

of ants belonging to the same nest), parameters settings recommendation and variants is

done. An experiment of applying AntClust algorithm on noisy data and an adaptation

of the algorithm in order to improve its performance is discussed. Also an analysis of the

behavior of the AntClust algorithm on incomplete medical data is done.

Chapter 6 presents a multiobjective interactive evolutionary approach for rules mining

from medical data. A presentation of the rules mining problem, of accuracy and interest-

ingness measures that can be used to evaluate the rules and some techniques that allow

evaluation of the rules without a prepocessing step and a review of evolutionary approaches

used in rule mining is done. Simulation results for finding association rules for some UCI

Machine Learning Repository datasets and a set of obstetrical data collected during one

year in a regional Obstetric-Gynecology hospital are done. Simulation results regarding the

influence of different correction techniques for missing values in data has on rule miner are

also analyzed. This chapter also presents a hybrid classifier based on non-nested generalized

exemplars and an evolutionary selection of attributes and exemplars and analysis its clas-

sification accuracy compared with others (un)supervised classifiers in order to find a good

scheduling algorithm.

Chapter 7 presents the conclusions and some directions for future research

1.4 Contributions

This thesis addresses the problem of applying evolutionary methods to optimization problems.

It is focused on discussing and applying the following evolutionary methods: evolutionary

algorithms, differential evolution, ant colony optimization and particle swarm optimization

applications in uncertain environments. Since uncertainties in optimization problems can

come from different sources we analyzed: the influence of noise in clustering problem, ro-

bustness in the case of scheduling problems, the behavior of some evolutionary schedulers in

dynamic environments and the discovery of association rules in an interactive environment.
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The main contributions of the thesis relative to the application of nature inspired algo-

rithms to optimization problems in uncertain environments can be summarized as follows:

∙ in order to slow down the premature convergence of Differential Evolution heuristics in

dynamic environments we proposed to use random elements (Chapter 3 page 15);

∙ in order to avoid the premature convergence of Particle Swarm Optimization heuristic

in dynamic environments we proposed a perturbation that affects the particle position

(Chapter 3 page 16);

∙ a Simple Population Scheduler is proposed. Its effectiveness for on online scheduling is

investigated (Chapter 4 page 20) and the influence of perturbation strategies (Chapter 4

page 22) and structure of initial population (Chapter 4 page 20) on the solution quality

is analyzed;

∙ for an Evolutionary Scheduler and an Ant Scheduler we done an analysis: of their

behavior in static and dynamic environments (Chapter 4 page 22) and of heuristics

robustness (Chapter 4 page 23);

∙ the ability of AntClust heuristic to cluster noisy data is analyzed and a density based

parameter is proposed in order to improve the clustering results (Chapter 5 page 29);

∙ numerical results regarding AntClust heuristic to cluster incomplete medical data are

discussed (Chapter 5 page 31);

∙ a multi-objective evolutionary rule mining algorithm for medical data that involves not

only automatic evaluation, but also the user evaluation of the rules (Chapter 6 page

38) is proposed. The particularity of our approach consists in introducing a crowding

distance between rules, that acts as a diversity criteria so that the Pareto set is being

stimulated to select elements from less crowded regions in ordered to be added into an

archive (Chapter 6 page 36);

∙ the influence of several methods of handling the missing values when searching for rules

in data are analyzed (Chapter 6 page 40);

∙ a evolutionary selection mechanism for classification rules generated using NNGE was

proposed and was applied in order to automatic select the scheduling strategy (Chapter

6 page 37).



Chapter 2

Optimization Problems in Dynamic

and Uncertain Environments

The problem’s objective in an dynamic environment is to follow the optima during the

environment changes and to find robust solutions. The problem’s objective in an uncertain

environment is to find the best of all possible solutions that will also be the most suited

when the environment is changing.

2.1 Optimization Problems in Uncertain Environments

There are different causes that can produce uncertainty into an environment:

∙ Noise. The fitness evaluation can be subject to noise.

∙ Perturbations.The design variables could be subject to perturbations or changes after

the optimal solution has been determined.

∙ Fitness Approximation. Fitness function is very expensive to evaluate, or an analytical

fitness function is not available, fitness functions are often approximated based on data

generated from experiments or simulations.

∙ Time Varying Fitness Function. The fitness function is deterministic at any point in

time, but is dependent on time.

7



8 Optimization Problems in Dynamic and Uncertain Environments

2.2 Optimization Problems in Dynamic Environments

The identification of optima’s that are changing is a problem for algorithms because of the

premature convergence. So, the algorithms must find a balance between the exploitation

and exploration of the search space. If the exploitation property is too much encouraged,

then it is possible to freeze into a local optimum and transform the search into a local

search. Otherwise if the exploration property is too much encouraged then it is possible

that the search to become random. The particularities of a dynamic optimization problem

are determined by: problem representation, the characteristics of the environment and the

quality measures used to evaluate the performance of the algorithm.

2.2.1 Continuous Optimization Problems

Continuous optimization studies optimization problems that handle functions defined on con-

tinuous domains, that are restricted on the definition domain and are optimized (maximized

or minimized). In this case, the optimum can follow a continuous or discontinuous trajectory

in the search space.

2.2.2 Combinatorial optimization problems

The combinatorial optimization problems (like resource allocation, design, scheduling, etc)

handle the efficient allocation of finite resources to achieve an objective when some of re-

sources are restricted.

2.3 Clustering as an Optimization Problem

Clustering is a technique whose aim is to identify groups (clusters) of similar data without

using any prior information on these groups but only by measuring some similarities (or

dissimilarities) between data. There are a lot of clustering methods that differ one from the

other by: (i) the information they required about the problem (e.g. number of clusters);

(ii) the way of identifying and constructing the clusters; (iii) the way of treating the data

(numerical, categorical or both types of data); (iv) the similarity measure which they use.

With respect to the way the clusters algorithms interpret the clusters there are two main

approaches: (i)clusters are distant compact sets (this implementation leads to a global op-
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timization problem); (ii) clusters correspond to dense regions sets separated by low density

regions sets (this implementation leads to a local optimization algorithms). Clustering algo-

rithms can be also classified regarding the number of criteria they try to optimize in single

and multi-objective optimization techniques.

2.3.1 Optimization Approaches in Clustering

Clustering problem can be seen like a:

∙ Global Optimization.

∙ Local Optimization.

∙ Multi-objective Optimization. In [ZZN+07] we analyzed different quality criteria

for unsupervised clustering of documents. The comparative analysis is based on a differ-

ential evolution algorithm that allows the estimation both of the number of clusters and

of their representatives. The results illustrate the particularities of different clustering

criteria and the ability of the proposed approach to identify both the number of clusters

and their representatives, suggesting that the best behavior is obtained by combining

the connectedness and separability measures.

2.3.2 Clustering on Noisy Data

Noise in data can come from random errors (unknown encoding, out of range variables,

inconsistent entries) or variance in measured variables. In order to remove noise several

methods can be used: consistency checks, domain knowledge, statistical methods, etc. In

the case of clustering techniques a method based on the measure of the data density can be

used. With respect to this criterion, clusters could be seen as dense regions of data while

the noise corresponds to regions with low density of data. Algorithms based on density are:

DBSCAN, DENCLUE and UNC (Unsupervised Niche Clustering). We proposed in [ZZ05b]

a density mechanism in order to improve the AntClust algorithm performance to deal with

noisy data (see Chapter 5).
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2.4 Rule Mining as an Optimization Problem

Data mining is an automated or semi-automated process for extracting previously unknown

and potentially useful knowledge and patterns from large databases. One of the data mining

problem that can be formulated like an optimization problem is association rule discovery

that seeks to discover associations among items encoded within a dataset. An association rule

has the form (A ⇒ C) where A (antecedent) and C (consequent) are disjoint conjunctions of

item subset pairs. Since rules are combinations of attributes, the association rules problem

may be seen as a combinatorial optimization problem. In this case its goal is to optimize

different quality measures of the rules (e. g. support, confidence) thus the association

rule mining can be considered as multi-objective optimization problem. A detailed multi-

objective evolutionary algorithm that discovers association rules in medical data in presented

in Chapter 6.

2.5 Conclusions

In this chapter we introduced the context on which this thesis is developed: optimization

problems, uncertain environments, clustering and rule mining problems. We started with a

presentation of the properties that can induce uncertainty into environment: the evaluation

of the fitness function that might be subject to noise, the design variables that might be

subject to perturbations, fitness function that might be approximated, fitness functions may

change over time. After that we detailed the dynamic environments properties, measures,

types of problems and benchmarks used for testing. Then, we presented the clustering and

rules process from an optimization perspective.



Chapter 3

Nature Inspired Metaheuristics Used

in Dynamic Optimization

Optimization problems in uncertain and dynamic environments are complex and difficult,

and often classical algorithmic approaches based on mathematical and dynamic program-

ming are able to solve only very small problem instances. For this reason, in recent years,

metaheuristics such as Ant Colony Optimization, Evolutionary Computation, Simulated An-

nealing, Tabu Search and others, emerged as successful alternatives to classical approaches.

3.1 Nature Inspired Metaheuristics

In this thesis we manly used three metaheuristics inspired from nature: evolutionary algo-

rithms, ant colony optimization and particle swarm optimization. We have chosen these

metaheuristics because of their ability to adapt to changing environmental conditions, fact

that makes them suitable for numerical experiments described in the next chapters.

3.1.1 Evolutionary Algorithms

Evolutionary algorithms (EA) are heuristic search techniques based on the idea of natural

evolution (selection, survival of the best). The process of collective learning of the population,

auto-adaptation and robustness are some of the advantages of evolutionary algorithms over

other global optimization techniques. Among the most known evolutionary algorithms are:

genetic algorithms (Holland 1975), evolutionary programming (Fogel 1966), evolutionary

strategies(Rechenberg 1973, Schwefel 1981), genetic programming (Koza 1999). Applications

11



12 Nature Inspired Metaheuristics Used in Dynamic Optimization

of evolutionary algorithms can be found in problems like: data clustering, scheduling, design,

simulation and identification, control, etc.

3.1.2 Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic inspired by the behavior of real ants

colonies which enables ants to find shortest paths between food sources and their nest. This

behavior is the basis for a cooperative interaction that leads to the emergence of the shortest

paths. ACO was proposed by Dorigo and has been widely used to resolve combinatorial

optimization problems (as traveling sales-man, sequential ordering problem, network routing

problem, graph coloring, etc) and rapidly became a popular optimization technique.

3.1.3 Particle Swarm Optimization

Particle swarm optimization (PSO) is a population based stochastic optimization technique

developed by Eberhart and Kennedy in 1995, inspired by the social behavior of bird flocking

or fish schooling. PSO is a population-based search procedure where the individuals, referred

as particles, are grouped into a swarm. Each particle in the swarm represents a candidate

solution to the optimization problem, that flies through the problem space by following

the current optimum particles. PSO is applicable to different domains like: training of

neural networks, extraction of rules from fuzzy networks, image recognition, optimization

of electric power distribution networks, structural optimization (optimal shape and sizing

design, topology optimization), process biochemistry, system identification in biomechanics,

etc.

3.2 Adaptation Mechanisms for Dynamic

Environments

Dynamic optimization problems are problems of which constraints, objectives or represen-

tations change over time during the optimization process. In stationary optimization, the

only goal of optimization algorithms is to find the global optimum as fast as possible, while

in dynamic optimization when the problem changes, the goal of an algorithm turns from

finding the global optimum to detecting the changes and tracking the movement of optimum
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over time. Nature inspired heuristics encounter problems regarding premature convergence

in dynamic environments that does not allow them to discover the new optima, because

the population loses the diversity in the iterative process. The simplest solution to resolve

the premature convergence problem would be to restart the algorithm when a change in

the environment is noticed, but this approach has the disadvantage that all the information

gained by the population are lost when the search is restarted. So, different techniques were

proposed to resolve this problem.

3.2.1 Evolutionary Algorithms

There are different techniques that preserve the population property of reacting at envi-

ronment changes without restarting the search process like [JB05]: maintaining population

diversity, memory mechanism and multi-populations.

There are two main approaches in enhancing the population diversity necessary for an

optima tracking process: a reactive one and a proactive one. The first approach consists in

reacting to a change by triggering a diversity increasing mechanism (e.g. hypermutation).

The proactive approach consists in maintaining the population diversity throughout the

entire run of the algorithm. This means avoiding the convergence by decreasing the selection

pressure (through sharing or crowding) or by directly stimulating the diversity (through

random immigrants in each generation).

In the case of memory based approaches, the EA contains a memory that allows to reuse

information from past generations, which is especially useful when optima repeatedly returns

to previous locations. Memory based approaches can be divided into explicit and implicit

memories. In the case of explicit memory, a specific strategy for storing and retrieving infor-

mation is defined (e.g. reinsert individuals from the memory that have been successfully in

similar environments). In the case of implicit memory, EA keeps a redundant representation

of the population (e.g diploidy).

Another diversity preserving mechanism is based on multiple populations. If each popu-

lation maintain information about a different promising area of the search space the search

process can easily follow the optimum. This approach can be of reactive type if a population

is reinitialized when a change is detected or of proactive type when populations are always

enforced to search different areas.
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3.2.2 Ant Colony Optimization

In the case of dynamic problem, different strategies were proposed in order to improve

ACO algorithm performance: population ACO, pheromone matrix update strategy, new ant

properties (sensitivity).

3.2.3 Particle Swarm Optimization

Many strategies are proposed for application of PSO in dynamic environments because PSO

outdated memory and diversity loss that can happen in the case of dynamic changes. The

outdated memory problem happens because the information stored in each element may no

longer be valid and may misguide the search. In the case of outdated memory, most of

the approaches assume that the change time in environment is known or can be detected

and the elements are reevaluated. In order to discover the environment changes, some

randomly chosen sentry particle are used to re-evaluated the environment at the beginning

of each iteration. Beside random particles the use of the global best particle and the second-

best particle as sentry particles is proposed. For avoiding population convergence, different

strategies were proposed: induce diversity after a change, maintain diversity during the

search and multi-populations.

3.3 Numerical Experiments

The existence of so many different mechanisms for maintaining diversity in populations, raises

the problem of choosing the right mechanism for a given problem. Besides its effectiveness,

a mechanism should be as simple as possible in order not to increase the computational

cost of the algorithm. In the same time, a given mechanism could have different impact on

different population-based optimization methods. So, in [ZZ06] we analyzed some simple

diversity enhancing mechanisms applied to two population-based optimization algorithms:

differential evolution (DE) [SP95] heuristic and particle swarm optimization (PSO) [KE95]

heuristic.
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3.3.1 Differential Evolution

Differential evolution (DE) introduced in [SP95] is a population-based optimization method

based on a recombination operator which uses randomly selected parents and a simple selec-

tion procedure based on a competition between a parent and its offspring.

3.3.2 Adaptation Mechanisms to a Dynamic Environment

To avoid premature convergence of the two analyzed algorithms, DE and PSO, in the dynamic

environment we analyzed the impact of the diversity enhancing schemes. In the case of

DE, we analyzed a parameter adaptation scheme, random elements and a multi-population

approach; for PSO, a simple perturbation scheme and a multi-population approach were

tested.

Adaptation Mechanisms for DE

In [ZZ06], as diversity measure we used the variance. In order to keep the diversity to

almost the same level during the evolution process, at each generation, t, the ratio cj = 
 ⋅

V ar(xi)/V ar(zi) is computed. Another mechanism we tested in [ZZ06] is a multi-population

approach that is characterized by the fact that in each population an adaptive DE algorithm

is applied and periodically a random migration process is started: any element of each

subpopulation is, with a given migration probability, interchanged with a randomly selected

element from an arbitrary sub-population. Despite their benefits for avoiding premature

convergence in the case of static problems, these mechanisms are not powerful enough for

tracking changing optima.

The problem which we analyzed in [ZZ06] is to find the simplest mechanism which is

still powerful enough to allow for tracking a changing optimum. In the case of continuous

changes of the optimum position (without large jumps) it should be enough to perturb the

current best element in order to arrive in the region of the new position of the optimum.

Thus, using a cloud of elements wandering around the currently best element could ensure

the ability of the algorithm to track the changing optimum.

In the DE with random elements the population is divided into two parts: a set of

elements which evolves according to DE rules and another set {x1, . . . , x�} of elements which
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just wander around the best element, x∗ , of the previous generation:

yji = xj
∗ +Kj ⋅N(0, 1), i = �+ 1, m, j = 1, n (3.1)

where N(0, 1) is a random value with a standard normal distribution and Kj > 0 is a

parameter controlling the amplitude of the perturbation.

Adaptation Mechanisms for PSO

The PSO algorithm also has premature convergence problems when the velocity, vi becomes

too small and the particles are frozen. In [ZZ06], we analyzed two ideas in order to resolve the

premature convergence problem: increase the particle speed and perturbing particle position.

In [LA05], a variant of perturbing the particle velocity is proposed: if the velocity values

smaller that a threshold value vc, are replaced with a random value U(−1, 1)Vmax/�. The

variant proposed in [LA05] is called Turbulent Particle Swarm Optimization (TPSO). We

proposed the use of a simpler approach based on perturbing not the velocities but directly

the position of frozen particles:

xj
i (t+ 1) =

⎧

⎨

⎩

xj
i (t) + vji (t + 1), if vji (t+ 1) ⩾ vc

xj
i (t) +Kj ⋅N(0, 1), if vji (t+ 1) < vc

(3.2)

where N(0,1) is a random value with a standard normal distribution and Kj > 0 is a param-

eter controlling the perturbation. Since any change in the position has an influence also on

velocity, the particle can escape from the local optimum.

3.3.3 Numerical Results

To analyze the impact of the diversity enhancing schemes for dynamic optimization problems

we used as test functions a dynamic variant of Ackley’s function and a test function from

the Moving Peaks Benchmark [Bra].

The evolution of the averaged distance between the best element in the population and

the current optimum is illustrated in Figure 3.1 for some variants of the DE algorithm. For

smaller values of 
 (e.g. 
 = 1 ) the adaptive DE is not able to track the optimum (Figure

3.1 (d)). On the other hand, using a percent between 25% and 50% of random elements

the behavior of the algorithm is significantly improved. It should be remarked that in order
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to track the optimum it is necessary to reevaluate at each generation the elements of the

current population.

(a) (b) (c) (d)

Figure 3.1: Behaviour of DE for dynamic Ackley function. (a) DE with fixed parameters (p = 0.5,
F = 0.5); (b) Adaptive DE with 
 = 1.25; (c) DE with fixed parameters (p = 0.5,
F = 0.5) and 50% random elements; (d) Adaptive DE with 
 = 1

For DE algorithms, we analyzed the impact of parameters adaptation and of random

elements. As is illustrated in Figure 3.2 the adaptive DE has an acceptable behavior but not

as good as if a small percent of random elements is used.

Figure 3.2: Behaviour of DE for one moving peak: offline error (left), current error (right). DE
variants: adaptive DE (
 = 1) + 50% random elements (thick line), adaptive DE
(
 = 1) + 25% random elements (dashed line), adaptive DE ((
 = 1.25)) without
random elements (thin line).

Since the convergence of PSO algorithms is slower than the convergence of DE algorithms

it would be expected that classical PSO algorithms are able to track slowly moving optima.

Figure 3.3 suggests that for simple dynamic problems there is no need for supplementary

diversity enhancing schemes (as position/velocity perturbation or random elements).

3.4 Conclusions

Both the Turbulent PSO introduced in [LA05] and the simple perturbed PSO that we pro-

posed in [ZZ06] proved to be effective in avoiding premature convergence. Concerning the
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Figure 3.3: Behaviour of PSO for one moving peak. offline error (left), current error (right). PSO
variants: classical (dashed line), perturbed PSO (thin line), PSO + 25% random
elements (thick line).

multi-population approach, the numerical experiments suggest that it slows down the con-

vergence of PSO but it is not able to avoid premature convergence by itself.

In the case of relatively slowly changing optima good results are obtained using simple

diversity enhancing mechanisms (e.g. parameter adaptation which favor large values of

the variance or random elements in the case of DE algorithms) or even no supplementary

mechanisms (as in the case of PSO algorithms). However, when the severity of change is

higher, supplementary schemes (e.g. exclusion [MM05], charged PSO [BB02]) should be

used.



Chapter 4

Task Scheduling in Dynamic

Distributed Environments

The task scheduling problem has attracted a lot of attention lately and as a consequence,

currently there are a lot of scheduling algorithms addressing different variants of the problem.

4.1 Grid Scheduling Problem

The grid scheduling problem is a NP-hard combinatorial optimization problem. Different

variants of the problem with respect to the tasks properties, to the computing environment

characteristics and to the scheduling process particularities can be found.

Formalization. The task scheduling problem aims is to find an allocation of resources

to tasks such that the tasks requirements (hardware, software), their precedence constraints

are satisfied and some quality of service criteria are optimized. The assignment of tasks is

based on estimations of the execution times of the tasks on various resources. Let us consider

a set of n tasks, {t1, . . . , tn}, to be scheduled on a set of m < n processors, {p1, . . . , pm}. Let

us suppose that for each pair (ti, pj) we know an estimation ET (i, j) of the time needed to

execute the task ti on the processor pj. A schedule is an assignment of tasks to resources,

S = (pj1, . . . , pjn), where ji ∈ {1, . . . , m} and pji denotes the processor to which the task

ti is assigned. If Tj denotes the set of tasks assigned to processor pj and T 0
j denotes the

time moment since the processor j is free then the completion time corresponding to this

processor will be CTj = T 0
j +

∑

i∈Tj
ET (i, j). The makespan is the maximal completion time

over all processors, i.e. makespan = maxj=1,m CTj. The problem to be solved is that of

finding the schedule with the minimal makespan value.

19
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4.2 Approaches in Static Environment

Since near-optimal solutions for task scheduling are acceptable in practice, we tested two

nature inspired heuristics for task scheduling: an evolutionary algorithm (simple population-

based scheduler) and an ant colony optimization scheduler. The test results we done are for

both static and dynamic environments.

4.2.1 Simple Population-based Scheduler

In [ZFZ11] we proposed a scheduler named SPS - SimplePopulationScheduler. The key

operator of the algorithm is the perturbation (mutation) operator, which is the module that

defines the schedules improvement strategy. Another element that influence the schedulers

performance is the initialization step.

Population initialization. The construction of a (sub)-optimal schedule is usually

based on creating an initial schedule which is then iteratively improved. When constructing

an initial schedule there are two decisions to take: (i) the order in which the tasks are

assigned to processors; (ii) the criterion used to select the processor corresponding to each

task. Depending on these elements, there are several strategies [BSB+01] as: random, OLB,

MET, MCT, Max-Min and Min-Min. Each of these strategies generates initial schedules

with a specific potential of being improved. Therefore, it would be beneficial to use not

just one strategy, but to use a population of initial schedules constructed through different

strategies. The use of some seed schedules in the initial population has also been emphasized

by many authors [BSB+01, PKN10, Xha07].

Perturbation. The initial schedules created by the scheduling heuristics are usually

non-optimal and thus they can be improved by moving or swapping tasks between resources,

that is equivalent with a mutation strategy. Depending on the criteria used to select the

source and destination resources, and the tasks to be relocated, there can be designed a

lot of strategies to perturb a schedule [XA10]. Most perturbation operators involved in the

scheduling heuristics used in task scheduling are based on two typical operations: ”move”

one task from a resource to another one and ”swap” two tasks between their resources. The

strategies presented in Table 4.1 were selected based on their simplicity, efficiency and ran-

domness/greediness balance. The ”random move” corresponds to the ”local move” operator

[Xha07] and is similar to the mutation operator used in evolutionary algorithms. The ”greedy

move” operator is related to the ”steepest local move” in [Xha07] but with a higher greediness
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Source Destination Strategy

Processor Task Processor Task

Random Random Random - Random Move

Most loaded (max CT) Random Best improvement - Greedy Move

Most loaded (max CT) Random Least Loaded (min CT) Random Greedy Swap

Table 4.1: Characteristics of the strategies used to perturb the schedules

since it always involves the most loaded processor. The ”greedy swap” is similar to ”steepest

local swap” in [Xha07] but it is less greedy and less expensive since it does not involve a

search over the set of tasks. If we apply at one step just one of the perturbations (random

move, greedy move or greedy swap) we will name it SimplePerturbation and if we apply

combination of the three types of the perturbations we will name it HybridPerturbation.

Since one perturbation step does not necessarily lead to an improvement in the quality

of a schedule, we consider an iterated application of the perturbation step until either n

iterations were executed (each task has the chance to be moved) or until a maximal number,

gp, of unsuccessful perturbations is reached.

4.2.2 Ant Colony Optimization

This section presents the particularities of the Ant Scheduler, inspired by the algorithm

introduced in [RL04].

Pheromone initialization. In order to help the construction of good schedules we

used the idea of incorporating information corresponding to a schedule generated by the

Min-Min heuristic. This has been done by reinforcing the elements in the pheromone matrix

which correspond to the Min-Min schedule. The idea to seed some information obtained

from greedy heuristics is a common approach in evolutionary scheduling [CX06] and it also

improves the behavior of the ant colony algorithm.

Local Search Step. Following the conclusions of previous studies [RL04], that local

search can significantly improve the behavior of an ant-based scheduler, we applied an im-

provement step to the best schedule found at each epoch. This improvement step is based on

a rebalancing operator. More specifically, in the rebalancing step the same actions take place
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like in the case of mutation for the population based scheduler (HybridPerturbation). This

operation is repeated for a given number of times or until no improvement can be observed.

4.2.3 Numerical Results

In the case of Simple Population-based Scheduler (SPS) we analyzed the influence of per-

turbation strategies [ZFZ11]. We also analyzed the ability of the simple population based

scheduler and ant colony optimization scheduler to construct schedules in the static case

for three types of environments: consistent (C), semi-consistent (S) and inconsistent (I)

[ZZC10a, ZZC10b].

Test Environment. The test data we used are from the benchmark introduced in

[BSB+01], which provides matrices containing values of the expected time for computation

(ET) generated based on different assumptions related to task heterogeneity, resource het-

erogeneity and consistency.

Analysis of the perturbation strategies. The aim of the numerical study for static

environments in [ZFZ11] was to analyze the influence of the perturbation strategies on the

performance of a Simple Population-based Scheduler (SPS). We also analyzed some initializa-

tion strategies: (i) random initialization; (ii) use of some scheduling heuristics and randomly

initialization for the other elements; (iii) use random perturbations of some scheduling heuris-

tics; (iv) use of Min-Min heuristic and random perturbations of it. As expected, the best

results were obtained when the initial population contains seeds obtained by using scheduling

heuristics, while the worst behaviour corresponds to purely random initialization.

We compared four perturbation variants (random, move-based, swap-based and the hy-

brid one) with a state of the art memetic algorithm hybridized with Tabu Search (MA+TS)

[Xha07]. Even if based on simpler operators, the algorithm proposed in this work provides

schedules close in quality to those generated by MA+TS, in the case of inconsistent test

cases (”u i **” problems), the proposed scheduler using the hybrid perturbation operator

provides better results.

Analysis of SPS and AS for Static Environments. In [ZZC10a, ZZC10b] we ana-

lyzed the behavior of the Simple Population-based Scheduler (SPS) and the Ant Scheduler

(AS) in a static environment. In SPS algorithm case, we used for tests a simple perturbation

strategy - GreadyMove. In our analysis we used the data characterized by highly heteroge-

neous tasks and processors, with different levels of consistency. We used the first files from

classes ”u c hihi” (consistent computing environment), ”u i hihi” (inconsistent computing
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environment), ”u s hihi” (semi-consistent computing environment). The results obtained

by GA [CX06] are slightly better than those obtained by our SPS and AS in the case of

consistent and semi-consistent problems but, since the standard deviation values for GA are

not provided it is hard to evaluate the statistical significance of this difference. On the other

hand, both SPS and AS behave better in the inconsistent case.

4.3 Heuristics Robustness Analysis

In [ZZC10b] we analyzed the robustness of the two previously presented scheduling algo-

rithms. A good schedule should satisfy three properties: (i) it should be obtained in a small

amount of time; (ii) it should be easily adapted to a slightly different context; (iii) it should

be robust, meaning that it is affected as little as possible by run time changes [CJSZ08]. The

obtained results suggest that for consistent and semi-consistent environments, the Min-Min

heuristic leads to the most robust schedules while, in the case of inconsistent environments

the SPS and ACO schedulers lead to more robust solutions.

4.4 Online Scheduling

In the case of online scheduling, the tasks arrive sequentially and they are scheduled as

they arrive, that differs from the previous approach, where task were scheduled in batches.

In [ZFZ11] several dynamic scheduling heuristics with aging have been tested against their

corresponding population based versions (the specific heuristic was used as perturbation

operator in SPS). Their behaviour has also been compared with the SPS algorithm using

the non-iterated hybrid perturbation (at each generation, the perturbation is applied once).

Among the dynamic algorithms we tested a flavour of DMECT as described in [Fr9], the

MinQL heuristics [FMC09] and the classic Min-Min and Max-Min with aging.

Test Environment. For online scheduling, we considered a simulation model where

tasks execution times (ET) follow a Pareto distribution. The arrival rate is simulated using

an 8 order polynomial fitted to some real world traces [Fei10]. A total number of 500 tasks

were generated for every test. Rescheduling was done every 250 time units given a minimal

ET of 1000 units. All tests were repeated 20 times.

Numerical Results. Several dynamic scheduling heuristics with ageing (DMECT,

MinQL) have been tested against their corresponding population based versions which were
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constructed by using the specific scheduling heuristics as perturbation operators in SPS

(pDMECT, pMinQL). Their behaviour has also been compared with the SPS algorithm

based on a non-iterated hybrid perturbation (at each perturbation step the hybrid perturba-

tion is applied only once).

Table 4.2 presents the main benefits of population based scheduling heuristics (pDMECT

and pMinQL) when used in online scheduling. Both pDMECT and pMinQL obtained signifi-

cantly better results than their non-populational variants, with pDMECT having a behavior

similar to SPS (the best values in Table 4.2 were validated using a t-test with 0.05 as level of

significance) . The only notable difference was that of speed. pDMECT required almost 30

seconds to build a schedule while the simple population-based schedules needed only three

seconds on average.

DMECT pDMECT MinQL pMinQL SPS Max-Min Min-Min

MS 66556.20 49409.11 76564.40 54332.89 46996.76 61165.15 68774.87

±15097.85 ±9522.13 ±18114.51 ±9891.15 ±8812.87 ±11936.19 ±15101.05

Time 66.56 28343.04 3.06 2254.64 2777.70 684.49 669.21

(ms) ± 15.50 ±10702.15 ±2.52 ± 314.45 ± 578.22 ±242.15 ±209.99

Table 4.2: Best average makespan (MS) obtained by online scheduling heuristics and their popu-
lation based variants

4.5 Adaptation to Dynamic Environment

In this section we present the analysis done in [ZZC10a, ZZC10b] concerning the behavior

of several mechanisms of exploiting information from previous scheduling stages applied to

two nature inspired schedulers and we discuss some experimental results.

4.5.1 Simple Population-based Scheduler

In the case of a dynamic environment, the scheduling process consists of consecutive schedul-

ing events. At each scheduling event, there is a list of available processors which is partially

different from the list corresponding to the previous step. If the difference between the list

of available processors is not too large, then one can exploit the schedules constructed at the

previous scheduling event.
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In order to use information from the evolutionary process corresponding to previous

scheduling events in [ZZC10a, ZZC10b] we analyzed the behaviour of two proposed variants:

use of good schedules obtained in the previous scheduling event and use of an archive of

good schedules obtained in previous scheduling events.

4.5.2 Ant Colony Optimization

The pheromone matrix ensures the communication between ants, as it is shared by all ants

at each epoch of a scheduling event. Thus, it seems natural to use it also for communication

between the scheduling events. This means that when a schedule is constructed for a new

list of available processors, the pheromone matrix is not reinitialized. The values computed

at the previous scheduling event are used instead. The main particularity of this approach is

that the pheromone values corresponding to unavailable processors are just kept unchanged

during the construction of a new schedule.

4.5.3 Numerical Results in a Dynamic Environment

The experimental analysis is conducted on the benchmark data provided in [BSB+01] and

the dynamic character of the computing environment is simulated by randomly marking

some resources as unavailable.

Test Environment. In order to simulate the dynamic character of the environment,

we generated at each scheduling event a new list of available processors by just randomly

removing a given percent of processors from the initial list of 16 resources. The percent of

unavailable processors we used in our experiments was 10%, 20% and 40%.

Numerical Results. In the case of the simulated dynamic environment we analyzed

the behavior of the dynamic SPS described and of the dynamic ant scheduler. For the

evolutionary scheduler we used the simple perturbation strategy, Greedy Move.

The aim of these experiments was to analyze the impact of the memory mechanisms (use

of previous schedules or previous values of the pheromones) on the ability of the evolutionary

and ant schedulers to adapt to dynamic environments. Table 4.3 contains the ratio of

scheduling events when the dynamic variants outperformed the static variants and also the

ratio of events when the static ones outperformed the dynamic ones. In all other cases the

static and dynamic variants behaved similarly. The main remark is that the behavior of

the two schedulers is different. In the SPS case as long as the difference between the lists
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of available machines corresponding to consecutive events is in average at most 12% then

using the archive of previous schedules is beneficial for all environment types (consistent,

semi-consistent, inconsistent). However the benefit of using a memory mechanism is larger

in the case of consistent environments and smaller in the case of inconsistent ones. In the

case of the ant based scheduler the memory mechanism based on the preservation of the

pheromone matrix does not lead to improvements over the static AS variant in the case of

consistent environments. On the other hand in the case of an inconsistent environment the

dynamic AS variant does not only have a better behavior than the static AS but it also leads

to schedules better than those obtained by SPS.

Problem Unavailable SPS AS

machines (%) Dynamic Static Dynamic Static

C 10 42/50 0/50 0/50 49/50

C 20 5/50 3/50 2/50 39/50

C 40 1/50 3/50 0/50 30/50

S 10 35/50 1/50 0/50 49/50

S 20 5/50 2/50 5/50 43/50

S 40 0/50 3/50 12/50 35/50

I 10 31/50 0/50 49/50 0/50

I 20 4/50 1/50 39/50 1/50

I 40 0/50 1/50 20/50 2/50

Table 4.3: Ratio of scheduling events when there are statistically significant differences between
the dynamic and static variants of the SPS and AS.

4.6 Conclusion

In this chapter we presented two scheduling algorithms: an evolutionary scheduler (Simple

Population-based Scheduler) and an ant colony optimization approach regarding scheduling

problem. We also analyzed their behavior in a static environment [ZZC10a, ZZC10b, ZFZ11],

dynamic environment [ZZC10a, ZZC10b] and for online scheduling [ZFZ11].



Chapter 5

Nature Inspired Clustering

Beside the classical hierarchical and partitional clustering techniques, the techniques inspired

from nature, like evolutionary clustering or swarm clustering techniques are successfully

applied to datasets clustering.

5.1 Ants and Clustering

The behavior of ant colonies inspired the development of various clustering techniques. Dif-

ferent approaches are based on different aspects of real ants behavior: (i) cemetery organiza-

tion and larval sorting; (ii) chemical recognition of nestmates [LMV02]; (iii) self-assembling

behaviour of ants; (iv) Pachycondyla apicalis ants strategy for prey searching.

5.2 AntClust Algorithm. Variants

The AntClust algorithm proposed in [LMV02], simulates the so-called ”colonial closure”

phenomenon in ants colonies. This phenomenon is based on some chemical odors the ants

posses, which allow them to recognize the difference between nestmates and intruders. Each

ant has its own view on the colony odor, which is continuously updated. Starting from

these ideas, Labroche et al. proposed a model of an artificial ant able to participate to the

clustering of a set of data.

Each ant, i, has the following characteristics: (1) An associated data, xi. This is the

unique element which is not modified during the clustering process; (2) A label, Li which is

a natural number that identifies the cluster; (3) A similarity threshold, Ti , which is used

27
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to establish if two ants are sufficiently similar to be nestmates; (4) The age Ai, which is in

fact a counter which counts the number of meetings to which the ant has participated and

it is used for computing some mean values; (5) An adaptive parameter, Mi which measures

the ant perception of its nest size; (6) An adaptive parameter, M+
i which measures the ant

perception of the acceptance degree by the other members of its nest. The better the ant is

integrated in its nest, the larger M+
i is.

The clustering process consists of three main phases: threshold learning phase, random

meetings phase and clusters refining phase. In the meeting phase five rules are applied based

on ants properties: the creation of a new nest, the inclusion of an ant into an existing nest,

the positive meeting between two nestmates, the negative meeting between two nestmates

and meeting between ants belonging to different nests.

5.3 Dealing with Noise in Ant Clustering

In [ZZ05b] we analyzed the behavior of AntClust for two synthetic noisy datasets. The first

set consists of 6 ellipsoidal clusters, generated by using a bi-dimensional normal distribution,

superposed with an uniform noise (see Figure 5.1(a)). The second set consists of 2050 points

grouped in 4 clusters having different geometric shapes (the points have been uniformly

generated in the interior of these geometric shapes) and 750 points uniformly distributed in

the exterior of the geometric shapes, representing the noise (see Figure 5.1(d))
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Figure 5.1: (a),(d) Results obtained by applying the original AntClust; (b),(e) Clusters identified
by ignoring the points for which the acceptance parameter (M+) is lower than the
quartile of values of M+ for all data; (c),(f) The ignored points (estimation of the
noise)

.
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AntClust (applied with kM = m2/10 for the first data set and kM = m2/2 for the second

data set) identified 6 and 4 clusters respectively as can be seen in Figure 5.1(d). Since M+ is

a measure of the acceptance degree of an ant by its nestmates it seems natural to interpret

it also as a level of its significance for the cluster. This means that data having low values

for M+ could be considered as candidates to be noise. The critical issue here is how to

choose a threshold on M+ values. Since all M+ values are in [0, 1) an absolute value could

be used (e.g. 0.1). On the other hand a relative value based on some order statistics could

be also applied. The results obtained by using as threshold the quartile value of M+s are

illustrated in Figures 5.1 (b), (c) and 5.1 (e), (f). In the case of ellipsoidal clusters, the result

is acceptable but in the case of geometrical clusters, the noise is not very well identified.

This suggested us to use also a measure related to the data density.

5.3.1 Density Information in AntClust

In order to introduce density information in AntClust we proposed to attach to each ant, i,

a new parameter, Di. This parameter contains an estimation of the ant’s perception on the

density of the region were it is placed. This parameter is set to zero at the beginning and at

each meeting between the ant i and a different ant j it is adjusted by Di := Di +Δi where

Δi =

⎧

⎨

⎩

exp
(

(1−S(i,j))2

2�2

i

)

if 1− S(i, j) ⩽ �i

0 if 1− S(i, j) > �i

(5.1)

where �i are parameters controlling the influence area of each data. Usually �i = � for all

i. This density is similar to the one used in DENCLUE but instead of computing it by a

systematic search of the neighborhood as in DENCLUE it is estimated based on the random

meetings of ants.

After the meetings phase, the parameter Di is divided by the ant’s age, Ai, the density

estimation being always in [0, 1). The first question concerning Di is if it really offers different

information than M+
i does.

A first way of using the values of Di is in the clusters refining phase: the elements without

clusters are assigned to a cluster only if their density value is larger than the density’s cuartile.

Moreover, only the elements already belonging to clusters that have a density value larger

than the density’s cuartile are taken into account when we are searching for the most similar

element. In this way, a new class appears: that of unclassified data which can be considered

noise.
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Figure 5.2: Geometrical clusters (a) the original clusters; (b) the noise superposed on the clusters;
(c) data in the third category; (d) identified clusters (fourth category); (e) identified
noise (first category); (f) data in the second category.

The parameter � plays an important role in identifying the clusters. We analyzed the

influence of this parameter on the behavior of AntClust for the data set consisting of four

geometric clusters (Figure 5.1 (d)) and a noisy data uniformly distributed on the exterior of

the geometric shapes. The algorithm should identify 5 classes, four corresponding to useful

data and one to noisy data. In order to evaluate the clustering quality we computed an error

measure introduced in [LMV02].

On the other hand, the different roles which Di and M+
i play suggest to use both of them

in order to control the separation of useful data from noise. This means to split the data in

four categories based on the values of their M+ and D parameters. The separation is based

on some threshold values TM (threshold for the acceptance degree) and TD (threshold for

the density). The four categories are: (1)First category. This contains all data i for which

M+
i ⩽ TM and Di ⩽ TD and corresponds to data having a high probability to be noisy (see

Figure 5.2(e)); (2)Second category. This contains all data i for which M+
i ⩽ TM and Di > TD

and corresponds to data having a high estimation of the density but a low acceptance degree.

These data couldn’t be classified even if they belong to rather dense regions. Usually they are

points at the border of clusters (see Figure 5.2(f)) and are somewhat similar to border points

identified in DBSCAN; (3)Third category. This contains all data i for which M+
i > TM and

Di ⩽ TD and corresponds to data having a high acceptance degree in their cluster but a

low estimation of the density. Usually these data belong to rather sparse regions but they

participated to many meetings (see Figure 5.2(c)). The existence of this category is explained

by the different thresholds used in the estimation of M+
i (Ti) and in the computation of Di

(�); (4)Fourth category. This contains all data i for which M+
i > TM and Di > TD and
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corresponds to data which belong to dense regions and have been accepted by their clusters

(see Figure 5.2(d)).

The results presented in Figure 5.2 have been obtained by using as thresholds, TD and TM ,

the quartiles of parameters D and M+ respectively, computed over the entire set of data.

5.4 AntClust Clustering for Medical Data

In [ZZ05a] we analyzed the effectiveness of the AntClust clustering algorithm proposed by

Labroche et al. [LMV02] applied to medical data characterized by the presence of both

numerical and categorical components but also by missing values. Ant-based clustering has

been successfully applied to documents categorization, web usage mining but, the applicabil-

ity to medical data with missing components and subjective categorical values has not been

analyzed. In [LMV02], AntClust is applied to a set of medical data containing numerical re-

sults from 5 laboratory tests in order to identify three groups corresponding to: euthyroidism,

hypothyroidism and hyperthyroidism, respectively. However, all the data components are

numerical and there are no missing values.

5.4.1 Similarity/dissimilarity measures appropriate for medical

data

A key element in a clustering process is the choice of an adequate similarity/dissimilarity

measure. When choosing such a measure we must take into account the nature of data to

be processed because a measure adequate to numerical data could not be appropriate for

categorical data. On the other hand, medical data are frequently characterized by missing

attribute values. There are different strategies to approach this problem [JD88]: incomplete

data removal, partial distance strategy and nearest prototype strategy.

Medical data frequently contains categorical attributes, expressing levels (degrees) of the

presence of a feature (e.g. a symptom). The classical coding of this type of data is: 0-if the

symptom is not present and 1,2,3 ... for increasing levels of the presence of the symptom.

Sometimes a sequence of consecutive values is not necessarily the most appropriate because

the difference between 0 (no symptom) and the first level (lowest level of the symptom

presence) should be larger than the difference between two other levels. This is because the
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levels of the symptom presence carry some subjective information which should be somehow

reflected by the values used in coding them.

We illustrated this situation for a set of data available at UCI Machine Learning Reposi-

tory - Dermatology database. We studied the influence of the of the threshold learning phase

for different calculation formulas and the adequacy of a given coding or of a dissimilarity

measure.

5.5 Conclusions

In this chapter we analyzed the ability of a nature inspired clustering AntClust to deal with

noisy and medical data. AntClust algorithm is inspired by ants behavior of generating new

nests, accepting ants in nests and reorganizing nests. Section 5.2 contains the description of

the algorithm and some parameters setting.

In Section 5.3, the ability of an ant-based clustering algorithm (AntClust) to separate

noise from data was analyzed. An analysis on the usefulness of both an existing parameter

attached to ants (M+) and that of a new parameter related to the density (D) have been

done. The computation of the density parameter and the postprocessing step of separating

the data in different categories do not modify significantly the complexity of the algorithm.

Moreover, since the parameter � can be computed based on the similarity thresholds, it is

not necessary to tune a new parameter. The preliminary results are encouraging but a lot of

things concerning the information carried by the parameters attached to ants still remains

unrevealed. The values of thresholds, TM and TD used in postprocessing the data in order to

identify the noise are mainly determined based on experiments and not on analytical reasons.

Some theoretical results concerning the estimations of parameters M , M+ and D computed

during the meetings phase would be highly desirable.

In Section 5.4.1 an analysis of the ability of AntClust algorithm to identify natural

clusters arising in some medical data is presented. The influence of the numerical coding of

categorical data representing degrees of a feature presence is also analyzed and a comparison

with the classical K-means algorithm for some medical data is presented. In this case, we

observed that as long as the similarity measure and the parameters are well chosen, AntClust

can be successfully applied in medical data clustering. On the other hand, when level-type

attributes are involved, an adequate choice of their coding could improve the clustering

result.



Chapter 6

Evolutionary Rules Mining

Data mining is the core step of KKD, that includes the application of several processing

methods to facilitate the data mining algorithm to improve and refine the discovered knowl-

edge.

6.1 Mining Rules

A rule can be presented in the following form: IF ”some conditions on the values of predict-

ing attributes are true” THEN ”some conditions on the goal attributes are true”. If there is

only one goal attribute and it specifies a class, then we discuss about a classification rule, ex-

pressing the possibility that data satisfying the antecedent (IF) condition belong to the class

specified in the consequent (THEN) part. When the goal attributes do not express a class,

then we deal with prediction rules, expressing hypotheses on the dependence between the

antecedent and consequent parts of the rules. Finally, when the potential sets of antecedent

and consequent attributes are not previously established, we investigate general association

rules expressing co-occurrence of different attribute values. Discovering and selecting rules

in data is a search process usually guided by measures quantifying the accuracy, compre-

hensibility and interestingness of the rules. These measures are usually conflicting, i.e. an

accurate rule is not necessarily interesting or easy to read, thus the searching process has

to be multicriterial. On the other hand, the data encountered in practice (e. g. medical

data studied in [LZZ08]) usually suffer from a significant number of missing values (MVs),

that implies different correction techniques that have to be applied to data in order to be

evaluated.

33
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6.1.1 Evaluation Measures

The quality of classification, prediction or association rules can be quantified using different

statistical measures, each of them capturing specific characteristics of the rules. The rules

extracted from data should explain the data, be comprehensible, and contain novel and

interesting knowledge, thus the measures of quality are divided in three main classes:

∙ accuracy measures - quantifying how well the rules explain the data (Supp), confidence

(Conf), accuracy (Acc), specificity (Spec) and sensitivity (Sens);

∙ comprehensibility measures - quantifying how easily the rules can be interpreted;

∙ interestingness measures - quantifying the potential to provide new, previously unknown

knowledge (Phi-coefficient (Φ), odds ratio (OR) and cosine measure (cos)).

The rules have the following general structure: IF (AT1,AT2, . . ., ATk) THEN (CT1,CT2,

. . ., CTl), where ATi denotes an antecedent term while CTj denotes a consequent term. Each

term involves one data attribute and it is a triplet ⟨a, op, value⟩ where a is an attribute, op

is an operator (equal, different, in, not in, less than, greater than) and value is a possible

value or a set of values for the attribute.

6.1.2 Handling Missing Values in Data

When we evaluate a rule with respect to a set of incomplete data we have to decide how

the missing values will be handled. The most radical approach to deal with missing values

(MVs) is to simply eliminate the observations with any missing variable values (i.e. the

incomplete cases) from the analysis. The variants we analyzed in [LZZ08] are based on the

idea of dealing with missing values during the rule mining process. The step when we have

to take into account the existence of missing values is while checking whether or not a record

with MVs matches a given rule.

In the case of incomplete data, when a rule R is evaluated, the missing values can interfere

with the evaluation process only when they correspond to attributes involved in the rule.

Therefore we have to decide on how the computation should be modified in such a situation.

We analyzed two methods.

Method 1. In this variant we try to limit the penalization of rules involving incomplete

attributes.
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Method 2. In the second variant, we did not ignore the incomplete records but we

penalized them by using a non-crisp matching value. Instead of the 0 match value for

a missing value, each missing attribute value will be assigned a probability to satisfy the

corresponding term of the rule.

This is a variant of estimating the probability that a missing value would satisfy the rule

term, based on the simplified assumption that the values of the attributes are uniformly

distributed on their range. By using other distribution models for the attributes values,

different matching values would be obtained. The main difference between the first variant

and the current one is the fact that in the first case cover(R, S) ∈ {1, . . . , cardS} while in

the second one cover(R, S) ∈ [1, cardS].

6.2 An Evolutionary Rule Mining

In [ZLZ08] we proposed to involve the user in the search process, as a predefined aggregation

of quality criteria is difficult to find and, moreover, it has been suggested that users can also

change their opinion on the rules’ quality during the evaluation process itself [OAT+99]. The

approach we proposed is based on a multi-objective evolutionary algorithm (MOEA).

We applied the mining technique on medical data sets from the UCI repository and for

a set of obstetrical data collected during one year in a hospital of Obstetrics-Gynecology.

Since the aim of our study was to design tools which can help medical specialists in making

decisions, we have to take into account the feedback provided by the specialist and to allow

him or her to intervene in the rules discovery process.

Encoding.

Each element (chromosome) of the population corresponds to a rule and it consists of a

list of components (genes) corresponding to all attributes in the data set. Each component

consists of three fields: ⟨ presence flag, operator, value ⟩. An element is a fixed-length list

with mixed values (binary, integer, real and interval). The difference between the antecedent

and consequent attributes is made only in the evaluation of an element.

Evolutionary Operators. During each generation, a new population is constructed

from the current one using some evolutionary operators.

By crossover, a new rule is constructed starting with two randomly selected rules from

the current population.
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Themutation has the role of modifying the rules obtained by crossover. For each attribute,

mutation is applied with a given probability (e.g. pm = 1/n) and it can affect one of the

fields (i.e. presence flag, operator or value) and only one at each mutation step.

Selection and Archive. After a new population is created by crossover and mutation, a

selection step (typical to MOEAs) is applied. Our selection strategy is similar to that used in

NSGA-II [DK07], meaning that the elements in the joined population (parents and offsprings)

are ranked based on the non-domination relationships. For stimulating the diversity of the

resulting Pareto front, a crowding distance is used as a second selection criterion: from two

elements having the same rank, the one with a larger crowding distance (suggesting that it

belongs to a less crowded region) is selected. The crowding distance can be defined in either

the objective or the decision variables space. A particular characteristic of our approach is

related to the crowding distance between rules.

We analyzed two types of distances, one expressing the structural differences between

rules and the other expressing the difference between the data subsets covered by the rules.

After a given number of generations, an archive of nondominated elements is constructed.

Not all non-dominated elements from the current population are transferred in the archive,

but they are filtered such that both the structural and the cover-based distances between

any two elements of the archive are larger than a given threshold (in our analysis we used

0.01).

6.3 User Interaction with the Mining Process

An interactive search allows the user to interfere with the evolutionary process in order

to guide it towards interesting regions of the search space. The idea of permitting the

user to interfere with the evolutionary process has already been explored in the context of

multiobjective evolutionary optimization [DK07] by asking the user to provide a so-called

”reference point” in the objectives space.

In the interactive variant, the search process consists of several stages; at each one, the

population is evolved for a given number of generations and the archive of the selected non-

dominated rules is provided to the user together with all the objective measures computed

for the testing dataset (measures not necessarily limited to those used as criteria in the

optimization process). In our implementation, we used the following set of measures: support,

confidence, accuracy, specificity, sensitivity, comprehensibility, odds ratio, lift, uncovered
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negative and relative risk [OAT+99]. Based on these criteria and on a subjective evaluation,

the user can decide whether there are uninteresting or incomprehensible rules. Then (s)he

can mark these rules and proceed to the next stage of the search. The effect of marking the

undesirable rules is twofold: firstly, the population elements corresponding to the marked

rules are replaced with randomly initialized elements. That allows the algorithm to explore

new parts of the search space, similar with random immigrants technique; secondly, the

marked rules are added to a list (Lp) of prohibited rules, creating an archive that stores the

parts of the search space that are considered to be uninteresting by the user.

A possible drawback of using a supplementary optimization criterion is that it usually

leads to a larger number of nondominated elements. In order to avoid this, the list of

uninteresting rules can be used to introduce some constraints, i.e. all rules similar to those

in the list are considered to be unfeasible. The rules’ feasibility is employed when the

domination relationship between two rules is checked: if one rule is feasible and the other

one is unfeasible, the first rule dominates the second one, disregarding the values of the

quality criteria; if both rules are unfeasible or both rules are feasible, the domination is

decided based on the values of the optimization criteria.

6.4 Evolutionary Pruning of Mined Rules

The NNGE (Non-Nested Generalized Exemplars) algorithm is a hybrid instance based learn-

ing method which infers data classification rules represented as non-nested and non-overlapping

axes-parallel hyperrectangles [Mar95]. After the set ℋ of hyperrectangles has been gener-

ated by the NNGE algorithm it is postprocessed in order to reduce its size and, hopefully,

to improve the classification accuracy [ZPNZ11].

6.5 Numerical Experiments

Numerical tests are done on two data sets types: medical data and task scheduling data.

In the case of the medical data sets, a multiobjective evolutionary algorithm is analyzed.

For task scheduling data sets, we analyzed the behaviour of a post-processing evolution-

ary selection strategy on a set of rules generated using non-nested generalized exemplars

techniques.
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6.5.1 Medical Data Sets

The numerical experiments contain results tested for the medical data sets from the UCI

repository and for a set of obstetrical data collected during one year in a hospital of Obstetrics-

Gynecology. In [ZLZ08] the aim of the experiments was to validate the ability of the evo-

lutionary approach to discover accurate rules, and to analyze the impact of the user’s inter-

vention in the searching process. On the other hand in [LZZ08] we analyzed the influence

of several methods to handle the missing values when searching for classification rules in

medical data.

Test Data

ObGyn dataset represents the data collected during one year (2006) in an Obstetrics-Gynecology

hospital. The set of data contains 2686 records corresponding to two classes: the class of

pre-term births (370 records, representing 13.77%) and the class of on-term births (2316

records, representing 86.23%). Each record contains 63 attributes corresponding to different

characteristics of mothers and new-born children. The overall percentage of missing values

is 23% but they are non-uniformly distributed over attributes.

Association Rule Discovery

In order to validate the ability of the implemented multi-objective evolutionary algorithm to

extract reliable rules, we firstly tested it in the case of classification problems. The results

were obtained for Pima Indians Diabetes andWisconsin Breast Cancer (1991) datasets, based

on two optimization criteria: accuracy (Acc) and uncovered negative (UN). The MOEA out-

come is comparable to those obtained by applying other rule-based classifiers implemented in

WEKA data mining tool): simple rules classifiers (ZeroR, OneR), conjunctive rules classifier

(CR), decision table majority classifier (DT), propositional rule learner based on repeated

incremental pruning (JRIP), nearest neighbour-like classifier with non-nested generalized

exemplars (NNge), partial decision trees (PART).

Impact of User Interaction

Two variants of including the user evaluation in the evolutionary process were implemented

and tested: user-criterion and user-constraint. User-criterion: For each element, a supple-
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Var/ No. Marked Conf. Sens. Spec. Acc. Lift

Stage rules rules range range range range range

I/1 16 − [0.42, 1] [0.25, 0.98] [0.31, 1] [0.54, 0.93] [1.24, 2.9]

I/2 6 − [0.23, 1] [0.25, 0.55] [0.88, 1] [0.81, 0.93] [2.88, 12.4]

I/3 4 − [0.97, 1] [0.28, 0.53] [0.99, 1] [0.94, 0.96] [12.1, 12.4]

II/1 16 10 [0.42, 1] [0.25, 0.98] [0.31, 1] [0.54, 0.93] [1.24, 2.9]

II/2 36 16 [0.75, 1] [0.07, 0.98] [0.97, 1] [0.92, 0.98] [10.06, 12.4]

II/3 32 19 [0.21, 1] [0.21, 0.99] [0.88, 1] [0.84, 0.98] [2.6, 12.4]

III/1 16 10 [0.42, 1] [0.25, 0.98] [0.31, 1] [0.54, 0.93] [1.24, 2.9]

III/2 15 6 [0.23, 1] [0.28, 0.98] [0.83, 1] [0.81, 0.99] [2.8, 12.4]

III/3 11 2 [0.75, 1] [0.27, 0.98] [0.97, 1] [0.96, 0.99] [9.3, 12.4]

Table 6.1: Breast data set: ranges of the quality measures for rules evolved in three MOEA
scenarios. Variant I: no user intervention. Variants II (user-criterion) and III (user-
constraint): at each stage, the user marks the rules having the value of confidence,
sensitivity, specificity, or accuracy less than 0.75.

mentary optimization criterion is the product between the minimal structural and cover-

based distances to all the elements in the list of marked rules. User-constraint: An element

which is structurally or semantically similar to at least one marked rule is considered un-

feasible. The feasibility property is employed when the domination relationship between

two rules is checked: one unfeasible rule is always dominated by a feasible one and cannot

dominate a feasible one; if both rules are either feasible or unfeasible, they are compared

according to the optimization criteria.

The impact of these variants on the number of nondominated rules evolved after three

stages is illustrated in Table 6.1, for the Wisconsin Breast Cancer dataset (each stage con-

sisted of 100 generations, the final quality measures lying within large ranges). The user

intervention consisted in marking all rules with the quality values smaller than a threshold

(e.g. confidence, sensitivity, specificity, or accuracy smaller than 0.75). The results in Table

6.1 prove that the user intervention led to rules of higher sensitivity and accuracy. As ex-

pected, the Variant II (user-criterion) led to a larger number of evolved rules, compared to

Variant III (user-constraint).

We also used the interactive variants of MOEAs to explore the rules’ space when analyzing

a set of ordinary obstetrical data (ObGyn data set), with the final aim of identifying potential

risk patterns for preterm births (i.e. birth before 37 weeks of gestation). The risk patterns
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could be expressed either as classification rules (IF ”some antecedent conditions are satisfied”

THEN class=preterm) or as prediction rules (IF ”some antecedent conditions are satisfied”

THEN ”the gestational age is less than a value”).

The strategy we proposed to allow the user to influence the process of rules’ discovery

is only a first step in developing an interactive system aimed at supporting medical doctors

in exploring the data and extracting new, possibly unexpected knowledge. The results we

obtained with the obstetrical data were not as relevant as we might have expected due

to multiple factors: on the one hand, the particularities of the data (many missing and

erroneous values); on the other hand, the limitations of the evolutionary strategy itself. Using

numerical values for the continuous attributes in order to avoid a preliminary discretization

was appealing, but this led to a very large searching space and to the discovery of rules

which were not easy to interpret. Using fuzzy variable instead of crisp ones could improve

the quality of the final rules, especially in the case of medical data.

Influence of Missing Values Handling on Classification Rules

Since the UCI data used for test does not contain missing vales we prepared the data for tests

by randomly eliminating mv% values of attributes (mv ∈ {10, 20, 30} and it represented a

percent of the number of total number of attributes in the dataset). For cross-validation,

the data were randomly split in five folds. The missing values were introduced only in the

data used for training, the validation sets being with the original values of attributes.

For handling missing values from data we analyzed three methods: Method 1 and Method

2 are described in section 6.1.2 and Method 3 is based on a simple imputation strategy (the

data are pre-processed such that the missing values are replaced with the median of all

existing values for the corresponding attribute). First method is the variant that tries to

limit the rule penalization and the second one is the variant with non-crisp matching values.

The experiments illustrated that by using different methods for handling the missing

values different sets of rules are obtained. On the other hand, the differences in the quality

of the obtained rulesets are not statistically significant. Slightly better results were obtained

for methods which adjust the computation of the quality measures in order to deal with

missing values (Method 1 and Method 2).

We further conducted a similar analysis on the set of obstetrical data set (obGyn). Our

aim was to evolve rules corresponding to the pre-term births class. The large number of

attributes leads to a very large search space, creating difficulties for the evolutionary algo-



Evolutionary Rules Mining 41

rithm to discover high quality rules. Therefore we selected various subsets of attributes to

be involved in the rules. The results presented in Table 6.2 were obtained when using as

possible antecedents in the classification rules the information about previous pregnancies,

miscarriages and abortions and about the fundal height. This last attribute has 16% of

missing values. We used the product between the specificity and sensitivity as unique opti-

mization criterion. The optimization being with a single criterion each run led to only one

rule. All obtained rules contain a term corresponding to ”fundus uterus” height attribute

(e.g. ”fundus uterus” height⩽ 29) even if this attribute has missing values while the other

ones do not contain missing values. This can be explained by the fact that the fundal height

attribute has a predictive value for the pre-term birth. On the other hand, as Table 6.2

suggests, the results obtained by the three analyzed methods are not significantly different.

However the first method leads to slightly better results than the other two.

acc spec sens UN lift

Method 1 0.70±0.09 0.73±0.13 0.52±0.17 0.58±0.12 1.92±0.63

Method 2 0.64±0.08 0.64±0.12 0.59±0.18 0.55±0.1 1.57±0.34

Method 3 0.64±0.05 0.66±0.07 0.54±0.11 0.57±0.06 1.54±0.29

Table 6.2: Results for obstetrical dataset

6.5.2 Task Scheduling Data Sets

An alternative to the switching algorithms is a brute force Best Selection (BS) strategy in

which every existing SA is tested against the existing system configuration, this is time con-

suming. An alternative could be to apply BS only in constructing a training set of data.

The training data contains several platform characteristics of the scheduling scenario (tasks

and resources related) together with the best SA (class label) for that specific configuration,

found by BS. This data set could be further used to train a classification system. Then, when

new configurations occur the classifier generated in the previous step is used to infer the cor-

responding SA. In [ZF11a, ZF11b] we tested several classification strategies in order to find

the one that ensures the largest classification accuracy and to identify which characteristics

of the scheduling events influence most the choice of an adequate SA.
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Test Data

The training set was synthetically generated using the models described in [Fei10]. Each

instance in the training set contains values corresponding to the following attributes: the

time when the schedule was completed, the mean task Estimated Execution Time (EET); the

mean standard deviation of the EET ; the mean task Estimated Completion Time (ECT); the

mean standard deviation of the ECT ; the mean task size; the mean standard deviation of the

task size; the total number of tasks; and the number of long tasks used in the experiment.

Besides this information for each configuration, the best SA found by BS was added in

order to characterize the class. Seven SAs were used for determining the best policy: Max-

Min [MAS+99], Min-Min [MAS+99], Sufferage [CLZB00], MinQL [FMC09], MinQL-Plain

[FMC09], DMECT [Fr9] and DMECT2 [Fr9].

Tested Classifiers. In the experimental analysis we used several classifiers implemented

in the WEKA data mining toolkit (MultiLayer Perceptron (MLP) neural network, Radial

Basis Function (RBF) network, Non-Nested Generalized Exemplars classifier (NNGE)), a

Fuzzy C-Mean unsupervised classifier and the hybrid classifier that combine the NNGE

algorithm with an evolutionary selection of relevant attributes and exemplars (EP-NNGE

described in Section 6.4).

Test Results. A first analysis was developed in order to determine the time spent by

the strategies for schedulers selection in order to find the most suitable scheduling heuris-

tics. The average runtime of each (un)supervised technique was bellow 2.5s (training step +

classification), while the BS strategy in the case of the 7 SAs requires around 6 seconds to

complete one schedule event. The high classification percentages as well as the low runtimes

make the learning techniques suitable for determining the best SAs without requiring a BS

or switching policy.

A second analysis is done regarding the accuracy of the classification techniques. The

behaviour of EP-NNGE and EPA-NNGE classifiers is similar for the three data sets even

and better than of the others heuristics.

6.6 Conclusions

In this chapter we presented an multiobjective evolutionary approach for rules mining in case

of medical data and an evolutionary selection strategy for finding classification rules that

ensure the selection of a good scheduling strategy based on scheduling event characteristics.
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Conclusions and Future Work

This thesis is focused on the application of nature inspired heuristics in uncertain environ-

ments; three concrete optimization problems (grid scheduling, data clustering, rule discovery)

that can be formulated like optimization problems in dynamic and uncertain environments

and some test functions for dynamic optimization are discussed.

In the case of the dynamic optimization we analyzed two algorithms: particle swarm

optimization and differential evolution. In order to improve the heuristics behavior in the

dynamic environments we introduced a simple perturbation mechanism for particle position

in the case of PSO heuristic (Section 3.3.2) and random elements for differential evolution

(Section 3.3.2).

For the scheduling problem we proposed a simple population based scheduler and an-

alyzed its robustness (Section 4.3) and behavior in the case of batch scheduling in static

(Section 4.2.3) and dynamic (Section 4.5.3) environments and online scheduling (Section

4.4). We also done an analysis of the impact of different variants of the initialization (Sec-

tion 4.2.1) and perturbation strategy (Section 4.2.3) in case of population based scheduler.

In the case of clustering problem we added a density parameter (Section 5.3.1) to AntClust

heuristic in order to improve its performance when is applied to noisy data and analyzed the

heuristic performance in clustering medical data affected by missing values (Section 5.4).

In the case of rules discovery, we proposed the introduction of human evaluator (Section

6.3) besides the evolutionary algorithm that performs the mining step. Another particularity

of our approach consists in introducing a crowding distance between rules, that acts as a

diversity criteria and the Pareto set is stimulated in order to select elements from less crowded

regions that are added into an archive (Section 6.2). We also analyzed the influence of several

methods to handle the missing values when searching for rules in data (Section 6.5.1).
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Another problem approached, in the case of rules discovery, is the classification of the

scheduling events, so when a new scheduling event appears the classifier should be able to de-

termine the scheduling algorithm that most minimize the scheduling costs. The contribution

in this case is related to introduction of a hybrid classifier based on non-nested generalized

exemplars and an evolutionary selection of attributes and exemplars (Section 6.4).

Some future research directions are presented at the end of each chapter. In the case

of grid scheduling problem the future work will address the case of interrelated tasks and

the case of using other metrics such as the Total Processing Consumption Cycle which is an

alternative to the makespan and it is hardware independent. In the case of clustering problem

a more detailed analysis of the behavior of the algorithm for other data should be done and

also application on real data would be desirable. In the case of evolutionary rule mining more

investigations can be done regarding missing values handling methods and evolutionary rule

miner design. Since the scheduling data analyzed using the evolutionary pruning technique

are unbalanced, a study regarding the influence of the balancing techniques on the proposed

technique is desired.

Since optimization problems in uncertain and dynamic environments are often encoun-

tered in real life and nature inspired heuristics are good candidates to resolve such problems,

future research will focus on analyzing others optimization problems and different nature

inspired heuristics for them.





46



Bibliography

[BB02] T. M. Blackwell and Peter J. Bentley. Dynamic search with charged swarms. In

Proceedings of the Genetic and Evolutionary Computation Conference, GECCO

’02, pages 19–26, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers

Inc.

[Bra] J. Branke. Moving peaks benchmark. www.aifb.uni-karlsruhe.de/

jbr/MovPeaks/movpeaks/.

[BSB+01] Tracy D. Braun, Howard Jay Siegel, Noah Beck, Lasislau L. Bölöni, Muthucumara
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